Prime Semigroups and Prime Groups

Shao-chang Lin

I. Introduction

The purpose of this article is to define a prime semigroup as well as a prime group according to the traditional definition for prime numbers. And from these definitions we establish a special relation between them.

II. Preliminaries

1. Prime semigroups

By a semigroup, we mean a nonempty set X with an associative binary operation, i.e.:

- i) Any two elements $x,y \in X$ imply $xy \in X$.
- ii) For any $x,y,z \in X$, (xy)z = x(yz).

A semigroup is said to be finite if the number of elements of it is finite, otherwise, it is infinite. In particular, a semigroup which contains only one element is said to be trivial,

For any semigrotp X, the following properties hold true:

- (1.1) For any a∈X, we have a^maⁿ=a m+n and (a^m)ⁿ=a^{mn}, where m and n are any positive integers.
- (1.2) If a=b then ca=cb and ac=bc, where $a,b,c\in X$.

In fact, a nonempty subset A of a semigroup X may happen to be a semigroup under the same operation. In this case, we say that A is a subsemigroup of X. In particular, any semigroup is a subsemigroup of itself.

From the above definition and (1.1), we can easily prove the following lemma:

Lemma (1.1). Let X be a semigroup. Then for any $x \in X$, the subset

 $A = \{x^k | k=1,2,3,...\}$ is a subsemigroup of X. In particular, $B = \{x^k | k=2,3,4,...\}$ is also a subsemigroup of X.

Next, let us consider a particular element which may occur in a semigroup X. By an idempotent, we mean an element $a \in X$ such that $a^2 = a$. In general, it is possible that a semigroup may contain more than one idempotent.

Lemma (1.2). The element u is an idempotent of a semigroup X if and only if {u} is a trivial subsemigroup of X.

Theorem (1.1) Every finite semigroup X contains an idempotent.

Proof: We prove this by finite induction. If X is trivial, then from lemma (1.2) we can prove that the only element of X is an idempotent of X. Next, assume that every finite semigroup, whose number of element is less than n, contains an idempotent. Now, we shall try to prove that under this assumption a semigroup X of order n (containing n elements) also contains an idempotent. For this purpose, let $x \in X$. By lemma (1.1), it foollows that:

$$A = \{x^k | k = 2, 3, 4, ...\}$$

is a subsemigroup of X.

Let us consider the following possible cases:

- 1) If $x \notin A$, then A is a proper subsemigroup of X whose order is less then n. By assumption, A must contain an idempotent. It follows immediately that X has an idempotent.
- 2) Otherwise, $x=x^k$ for some $k \ge 2$. If k=2 then $x=x^2$, so x is an idempotent of X. When k>2 we have

$$x^{k-1}x^{k-1} = x^{2k-2} = x^kx^{k-2} = xx^{k-2} = x^{k-1}$$
.

This implies that x^{k-1} is an idempotent of X. Hence we complete this theorem.

¶

Definition (1). A semigroup is said to be prime if and only if it has only trivial subsets and itself as its subsemigroups. In other words, a prime semigroup has no proper subsemigroup other than trivial subsemigroups and itself.

2. Prime Groups

By a group, we mean a semigroup X which satisfies the following two conditions:

i) There exists a unique element e∈X such that

$$ex=xe=x$$
 for every $x \in X$,

ii) For every $x \in X$, there is a unique element $x^{-1} \in X$ such that $x^{-1}x = xx^{-1} = e$.

*For convenience, define $x^0 = e$.

According to the definition of groups, any group is a semigroup. But the converse is not true. We say that a group is finite if it is a finite semigroup, otherwise, it is said to be infinite. For any group X, the following properties hold true:

(2.1). For any $a \in X$, we have

$$a^m a^n = a^{m+n}$$
 and $(a^m)^n = a^{mn}$,

where m and n are any integers.

(2,2). Let a,b,c, be any elements in X. Then

In fact, a subsemigroup A of a semigroup X may happen to be a group. In this case, we say that A is a subgroup of X. In particular, if X is a group then {e} and X are both subgroups of X. We call them a trivial subgroup and the improper subgroup of X respectively. The other subgroups of X (if any) are called proper subgroups.

Lemma (2.1). Let X be a group. Then the element e is the only idempotent in X.

Proof: Assume that a is an idempotent of X. Then by poperty (2.1), it follows that:

$$a = a^{2}a^{-1} = aa^{-1} = e$$
.

From Lemmas (1.2) and (2.1), we obtain:

Lemma (2.2.). Every group has one and only one trivial subsemigroup, that is {e}.

Theorem (2.1). Every subsemigroup of a finite group X is a subgroup of X.

Proof: Let A be a subsemigroup of X. Then A is finite. By theorem (1.1). and lemma (2.1), it follows ready that A contains e, the neutral element of X.

Next, we have to prove that every $x \in A$ implies $x^{-1} \in A$. Clearly $e^{-1} = e \in A$. Let $x \in A$ and $x \neq e$. Since X is finite, there must exist a positive integer k > 1 such that $x^k = e$. For if not, then $x^n \neq e$ for every positive integer n. But X is a finite group, so we can find two powers of x such that $x^p = x^q$, where p > q. By property (2.2), it follows that $x^{p-q} = e$, contradicting our assumption. By property (2.1), we have

$$x^{-1} = x^{k-1} \in A$$
,

Hence we complete this proof.

Definition (2). A group is called a prime group if and only if it is finite and has only {e} and itself as its subgroups. In other words, a prime group is a finite group which has no proper subgroup other than the trivial subgroup and itself.

In particular, a trivial group is considered as a prime group.

III. Theorem. A semigroup is prime if and only if it is a prime group or has at most two elements.

Proof: We shall prove this theorem in two parts:

- 1. Necessity. Let X be a prime semigroup. To prove that X is a prime group or has at most two elements, one of the methods is to consider the following two possible cases:
- 1) If every element of X is an idempotent, then for any two distinct elements a, $b \in X$, there are only three cases which the product of a and b may occur. That is:
 - i) If the product of a and b is equal to either a or b, then $\{a, b\}$ is a subsemigroup of X. It follows readily that $\{a, b\} = X$.
 - ii) Assume ab=a, (or=b) and ba=c for some c∈X. Then

$$ac = a$$
 (ba) = (ab) $a = aa = a^2 = a$ and

$$ca = (ba) a = ba^2 = ba = c$$
.

From i), it follows that $\{a, c\} = X$.

iii) Assume ab=c and ba=d for some c,d∈X. Then

$$da = (ba) a = ba^2 = ba = d$$
.

From i) and ii) it follows that $\{a,d\} = X$

Hence, in the case 1), X can possess at most two elements.

2) Otherwise, let x be an element of X which is not an idempotent. Then $x^2 \neq x$. By lemma (1.1), we know that

$$A = \{x^k | k = 1, 2, 3, ...\}$$

is a subsemigroup of X which contains at least two distinct elements, i. e., x and x^2 . Since X is prime, so A must be equal to X.

Furthermore, there exist two powers of x in A which represent the same element in X. For if not, then all powers of x are distinct and A is infinite. Thus, the subsemigroup

$$B = \{x^k | k = 2,3,4,...\}$$

is a proper subsemigroup of X. This is contradictory to our assumption that X is

prime.

156

Now, let m be the smallest integer such that $x^r = x^m$ for some r > m and consider the following possible cases for r:

i) If r=m+1, then m must be greater than 1, (since $x\neq x^2$), and by property (1.1) we have

$$x^{r+p} = x^p x^r = x^p x^m = x^{p-1} x^{m+1} = x^{p-1} x^m = \dots = x x^m = x^{m+1} = x^m$$
, i.e. $x^s = x^m$ for all $s \ge m+1$(*1)

Since

$$2m-1=(m+1)+(m-2) \ge m+1$$
,

so from (*1) there results

$$x^{m-1}x^m = x^mx^{m-1} = x^{2m-1} = x^m$$
.

It follows that $\{x^{m-1}, x^m\}$ is a subsemigroup of X. Hence $\{x^{m-1}, x^m\} = X$. This proves that X contains at most two elements.

ii) Otherwise, the subset

$$C = \{x^{m+i} | i = 0,1,2,...,r-1\}$$

contains at least two distinct elements, i.e., $x^m \neq x^p$ if m . Now, we will try to prove that C is a subsemigroup of X. For this purpose, let <math>r=m+d for some d such that 1 < d < r. As we know, for a given positive integer p there exists a unique positive integer k, $0 \le k < d$, such that p=qd+k. It follows that

$$x^{r+p} = x^p x^r = x^{k+qd} x^m = x^{k+(q-1)d} x^{m+d} = x^{k+(q-1)d} x^m = \dots = x^k x^m = x^{m+k},$$

i.e. $x^s \in C$ for all $s \geqslant r$(2*)

From (2^*) , it is easily seen that C is a subsemigroup of X. Since X is prime, it follows that C=X and $x=x^k$ for some $x^k\in C$. Hence, m must be equal to 1. Therefore, we have

$$X = \{x, x^2, x^3, ..., x^{r-1}\}$$
 and $x^r = x$.

Finally, we complete this proof by proving X is a finite group. Since

- i) $x^{r-1}x^k = x^kx^{r-1} = xx^{k-1} = x^k$, k = 1,2,3,...,r-1, this proves that x^{r-1} is the neutral of X.
- ii) For any positive integer p, $1 \le p < r-1$, there exists a unique positive integer q, such that p+q=r-1, where $1 \le q < r-1$. It follows that

$$x^{q}x^{p}=x^{p}y^{q}=x^{p+q}=x^{r-1}$$
,

this proves that every element of X has a unique inverse.

Hence X is a finite group. From definitions (1), (2) and theorem (2.1), it follows immediately that X is a prime group.

2. Sufficiency.

If X is a semigroup which contains only two elements, then the result is obvious.

Assume that X is a prime group. Then it is finite. If A is a subsemigroup of X, then by theorem (2.1) and definition (2), A must be equal to either the trivial subgroup or X. Hence X is a prime semigroup according to definition (1). \parallel

REFERENCE

- 1. Sze-tsen Hu, Elements of Modern Algebra (1965), chapters II-III
- 2. Dennis B. Ames, An Introduction to Abstract Algebra (1969) pp. 29-63
- 3. Jacobson, Lecture of Abstract Algebra (1951), pp 15-48

質半群與質群

林 韶 璋

本文乃依傳統上對質數所下之定義而定義質半羣與質羣。進而討論此兩羣間之特殊關係。

Prime Semigroups and Prime Groups

hao-chang Lin

The purpose of this article is to define a prime semigroup as well as a prime group according to the traditional definition for prime numbers. And from these definitions we establish a special relation between them.